Objectives of this task:
To calculate the *Empty Weight* and the balance point or *Centre of Gravity* of the aircraft. The *Empty Weight Trim Index* is calculated from these values and then various loading scenarios are to be tested to see if any rebalancing of the aircraft is required. Finally, all values are entered into the *Aircraft Empty Weight Record* in Section 6.2 of the Owners Manual.

Equipment required:
- 3 bathroom scales capable of weighing up to 150Kg
- Plumb bob and string line, set square
- Builders type spirit level
- Chalk and a builders chalk line to mark the reference positions onto the hangar floor

Prepare the equipment
Before you do anything else, check your scales for accuracy: use some objects of a known weight, such as a few 20Kg bags of cement to see if your scales are reading correctly at around the 100Kg range of the scale.
If there is a problem then either adjust the scale or, if this is not possible, note how much the scale over/under reads and apply this as a correction to the weight displayed.

Prepare the aircraft
Remove all surplus items from the cockpit: tools, clothing, etc. and clean the interior of the aircraft with a vacuum cleaner. Clean the exterior of the aircraft: remove all dust and dirt with a damp cloth. Check that the engine oil is full to the bottom of the hatched marking on the dipstick. Turn the fuel tap on the console to the OFF position (lever facing up).
Fill the header tank with fuel but leave zero fuel remaining in the wing tanks. The aircraft should contain everything required for flight except fuel in the wing tanks.

Reference points
In this task you will be measuring the horizontal distances from the *Datum*, which is the leading edge of the wing, to the main wheel axles and the front wheel axle. Each reference point will be marked onto the hangar floor and then measured.

Mark and measure
Refer to the drawing on the next page for colour-coded details of the line markings.
Use a chalk line to mark 2 lines at least as long as the aircraft on the hangar floor in a right angle cross. Roll the aircraft directly along one line (coloured blue in the drawing) until the main wheels are directly over the second line (coloured green in the drawing). The main wheel axles must be directly over the second (green) line: use a square or a plumb line from the axle bolt centres in the main wheel spats to check this and move the aircraft as required. Leave the brakes off and chock the main wheels when the position is correct. Mark the *Datum* line (coloured purple in the drawing) on the floor by means of a plumb line hung from the leading edge of each wing, using a point about 300mm outboard of each main wheel. Join both *Datum* line marks and mark a line across the floor with your chalk line.
Mark a point on the floor directly under the centre of the front axle bolt on each side: use a square or a plumb line from the axle bolts in the front wheel spat to check this.

Now measure the distance from each side of the front axle (the red line above) to the Datum line: these are distances A and B. Add them both together and divide by 2 to get the average distance – this will compensate if the front wheel is not set exactly straight ahead. Enter the distance as a negative value in the Distance to Datum column on the chart on the next page.

Measure the distance from the left main wheel axle to the Datum line and enter the value at distance C in the chart on the next page. Do the same for the right main wheel (distance D).
Weigh the aircraft
The weighing part of this procedure should be conducted in a closed hangar with a level floor. Because the aircraft is very light any wind will adversely affect the weights, so a closed building, without any doors being opened during the procedure, is required.
Place a set of scales under each wheel and level the aircraft: use a builders level across the lower door sills to check for lateral level, and along each lower door sill to check for longitudinal level. Pack under wheels as required to level the aircraft.
Record the weight of each wheel under the “Weight” column in the chart below.
Note: if you have access to only 1 set of scales you may weigh each wheel individually, however you will need to pack under the other wheels to level the aircraft before each weight is recorded.

Calculate the Empty Weight and Centre of Gravity
Sum all of the items in the Weight column and put the total at the bottom of the column. All distances aft of the Datum are considered positive and all distances forward of the Datum are considered negative in the calculation that we are about to do in this step.
Calculate the Moment of each wheel: starting with the nose wheel, multiply the Weight by the Distance to Datum and record the result in the Moment column. Note that the Distance to Datum value for the nose wheel will be a negative value and the result will also be negative. Multiply the Weight by the Distance to Datum and record the result in the Moment column for each main wheel. These results will both be positive values.
Sum all of the items in the Moment column and put the total at the bottom of the column. Divide the total Moment by the total Weight and record the result in the red box at the bottom of the chart – this is the distance aft of the leading edge where the empty aircraft will balance and is referred to as the Empty Aircraft Arm.

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight (kg)</th>
<th>Distance to Datum (mm)</th>
<th>Moment (kg/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOSE WHEEL</td>
<td>(A+B)/2 -</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Left main wheel</td>
<td>(C) +</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Right main wheel</td>
<td>(D) +</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Column totals:</td>
<td>Moment / Weight</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Empty Aircraft Arm: \[
\text{mm aft of Datum}
\]

Calculate the Empty Weight Trim Index
MULTIPLY THE EMPTY AIRCRAFT WEIGHT BY THE EMPTY AIRCRAFT ARM AND DIVIDE THE RESULT BY 1000 TO ARRIVE AT THE EMPTY WEIGHT TRIM INDEX.

This value can be used in the Load and Balance Worksheets in Section 6 of the Owners Manual.
Examples of calculation
Below is an example calculation showing typical values:

<table>
<thead>
<tr>
<th>Item</th>
<th>Weight (kg)</th>
<th>Distance to Datum (mm)</th>
<th>Moment (kg/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOSE WHEEL</td>
<td>75</td>
<td>-780</td>
<td>-58,500</td>
</tr>
<tr>
<td>Left main wheel</td>
<td>108</td>
<td>+475</td>
<td>+51,300</td>
</tr>
<tr>
<td>Right main wheel</td>
<td>108</td>
<td>+475</td>
<td>+51,300</td>
</tr>
<tr>
<td>Column totals:</td>
<td>291</td>
<td>Moment / Weight</td>
<td>44,100</td>
</tr>
</tbody>
</table>

Empty Aircraft Arm: \[(291 \times 151.55) / 1000 \] = 44.1.

Rebalancing the aircraft
You must now use the Load and Balance Worksheets in Section 6 of the Owners Manual to test all of the likely loading scenarios for your intended operations and see if any fall outside of the envelope.

For factory built aircraft we are required to use the CASA-approved standard passenger weight (currently 86kg) to calculate loadings, but as you are the builder you may choose to use the actual weights of yourself and your regular passenger(s) along with items that you intend to carry with you, such as tie downs, toolkit, suitcases, camping equipment and so on.

If it seems possible that an intended loading could exceed, for example, the forward limit, then you would need to consider adding some ballast to the rear of the aircraft.

If any rear ballast is required the preferred method is to add it in the form of lead shot mixed with resin to the ventral fin. (Note: It is unusual to need forward ballast – if there is an intended loading that would require forward ballast it will usually be very close to MTOW anyway and should very probably be avoided altogether.)

Assuming that rear ballast is required you would measure the arm of the ballast station/location from the Datum and calculate the weight of ballast required, adjust the calculations to obtain a revised Empty Aircraft Weight, Empty Aircraft Arm and Empty Weight Trim Index and then retest all of the likely loading scenarios for your intended operations and see if any still fall outside of the envelope.

Once you are satisfied that the majority of the likely loading scenarios for your intended operations will fall inside of the envelope, you may physically add the ballast and repeat the weighing procedure and then record the revised values in the Aircraft Empty Weight Record in Section 6.2 of the Owners Manual.

This completes the Testing>Weight and balance task.